Quantitative research

Roelien Herholdt January 2015

Introduction and word association

Contents

Theory
Three basic designs
Research process
Popular experimental techniques

General statistics

Detours with terminology

Theory

Set of propositions which describes the nature of relationships between predefined constructs/variables Can be implicit or explicit

Theory building

- Description
- Taxonomy/categorisation of phenomena
- Relational rules: how variation in one construct affects other constructs

Theories, models and paradigms

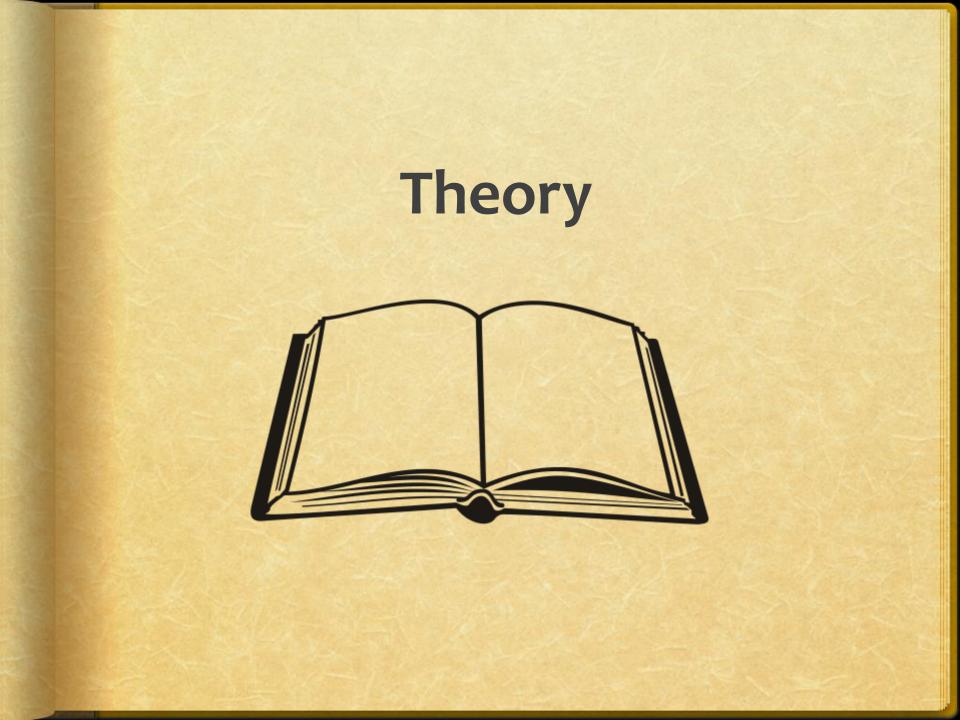
Theory testing

- Parsimony no redundancies
- Explanatory power
- Flexibility
- Internal consistency
- External validity power of prediction
- Falsification
 - Circular reasoning
 - Tautology

Related theories, concepts, processes

••••

Paradigm


Theoretical model /theory of change

Research questions

Statistical model

Research design & methods

Why is knowing the theory important?

- Different types of theory/different understandings of change are suited to different types of research methodologies, including mixed methods
- Research methodologies differ in at least four dimensions:
 - Type of data elicited intrapersonal, interpersonal, societal, etc.
 - Technique of data elicitation direct elicitation, indirect elicitation, amount of control
 - Type of survey design for monitoring change
 - Longitudinal follows same people over time, data collected at least twice in a period
 - Cross-sectional data collected from people under different conditions
 - Sequential data collected from people under specific conditions, but at different times
 - Data may be treated as quantitative or qualitative

Detour

Population – collection of all individuals of interest in a study
Parameter – characteristic of a population

Sample – set of individuals selected from the population and intended to represent the population in the study Statistic – characteristic of a sample Case or unit of analysis – respondent of interest

Time of measurement – collective term for all factors that might influence the study at the time of data collection

Every type of design holds some aspect constant

while varying others

Longitudinal

- Constant is the sample of subjects
- Time of measurement and chronological age vary

Potential problems

- Learners may leave or join the school
- Distinguishing intervention effects from normal development and/or growth

Cross-sectional design

- Time of measurement stays constant
- Chronological age and sample vary

Potential problems

 Distinguishing between intervention effects and effects due to variations in the sample and age

Sequential design

- Chronological age stays constant
- Time of measurement and sample vary

Potential problems

 Distinguishing between intervention effects and effects due to variations in the time of measurement and the sample

2015 Grd 1 2016 Grd 1 2017 Grd 1

One design inherently better than the other?

 Every type of design holds certain aspects constant while varying others in order to determine what drives the change in outcome

Combine designs to compensate for weaknesses in specific design

 Remember research designs and methods are only tools for testing a theory - they are not inherently good or bad

• Your use of designs and methods is good or bad: Ethics !!!

Ideas for sample

Ideas for design

Topic - Good knowledge of theory

Formulating research questions

- Must be specific (target population and context)
- Must be testable
- Must be feasible
- Must be answerable
- Then:
- Provide operational definitions for concepts in research questions, e.g. fluent reading is..... (find definition in literature)

Detour

Variable – any construct/characteristic or effect

Dependent variable – effect or construct under investigation

Independent variable – any variable that causes changes in the dependent variable

Hypothesis

- When inferring something about a population from sample data, you would generally translate research questions into a hypothesis
- A hypothesis is a theoretically generated prediction about how the independent variable will affect the dependent variable
- \circ Null hypothesis (H_o) state of no change or effect
- \circ Alternative hypothesis (H₁) state of change or effect
- You cannot prove a hypothesis: you can only disprove it

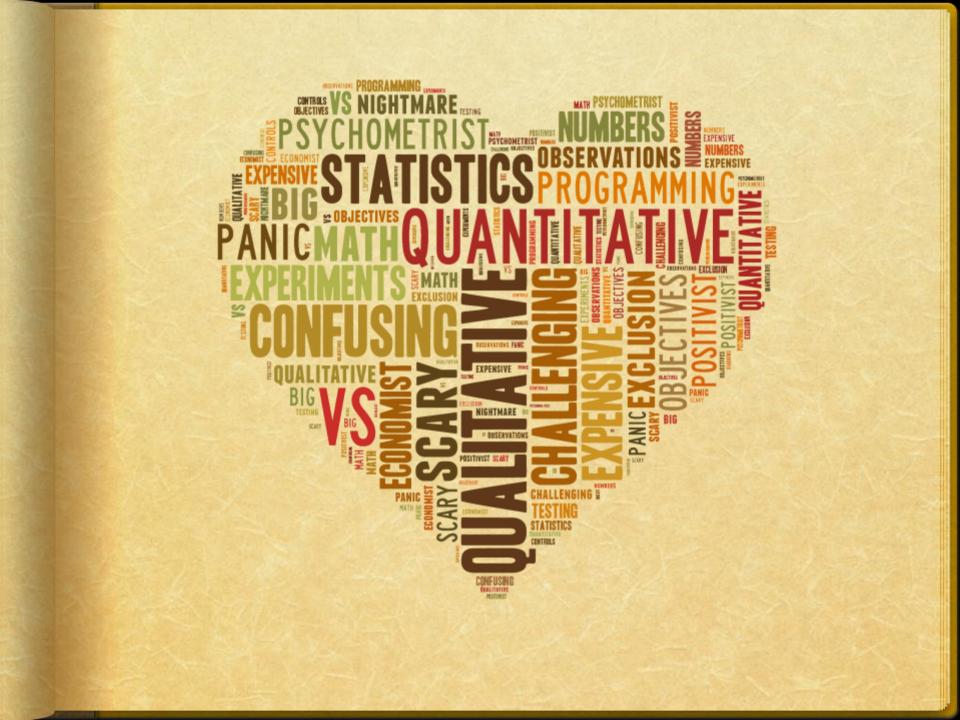
Examples of hypothesis

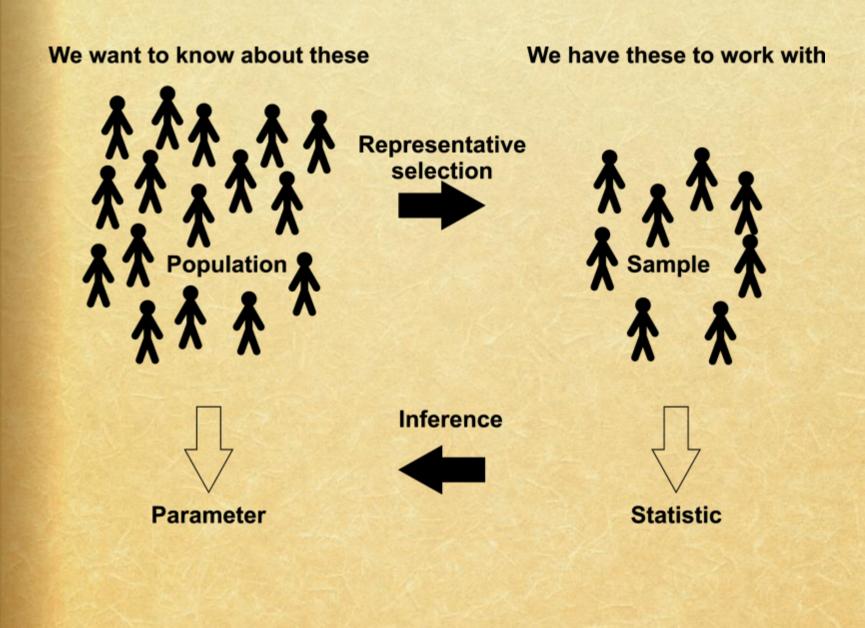
E.g. in a reading intervention H_0 : mean of intervention = mean of control H_1 : mean of intervention \neq control (two tailed) H_2 : mean of intervention > mean of control (one tailed)

A mean is the average

Samples

- Think about subjects required
 - Type of subject (need for parental permission?)
 - How many subjects?
 - Will subjects be paid or incentivised?
 - Ethical regulations: informed consent and assent
- Sources of bias (sample may be skewed or unfairly effect results)
 - Selection
 - Attrition drop-out during study
 - Subject non-compliance
 - Purposeful non-compliance recruitment of subjects?
 - Accidental non-compliance instructions to subjects?

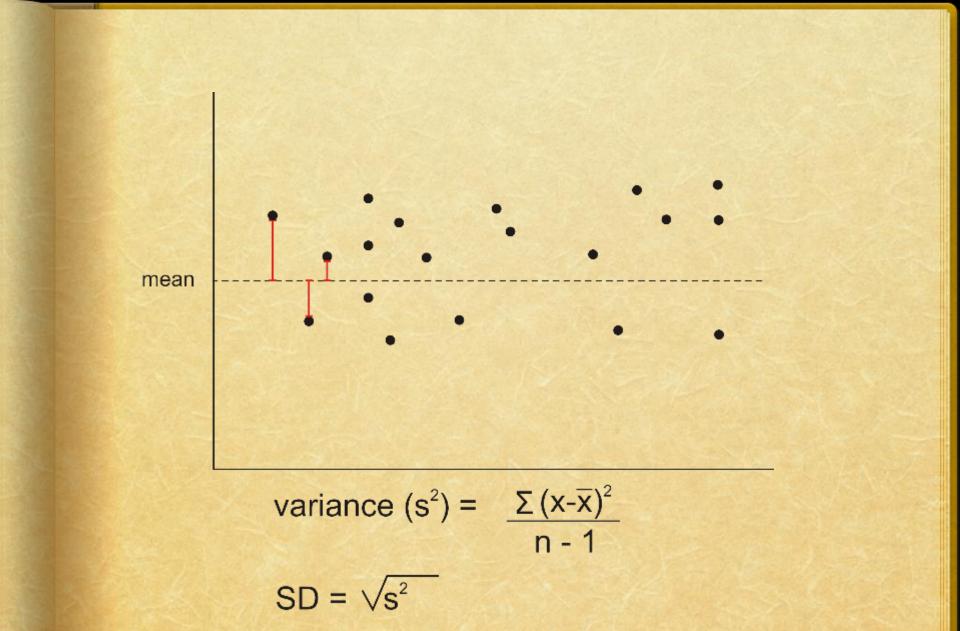

Detour

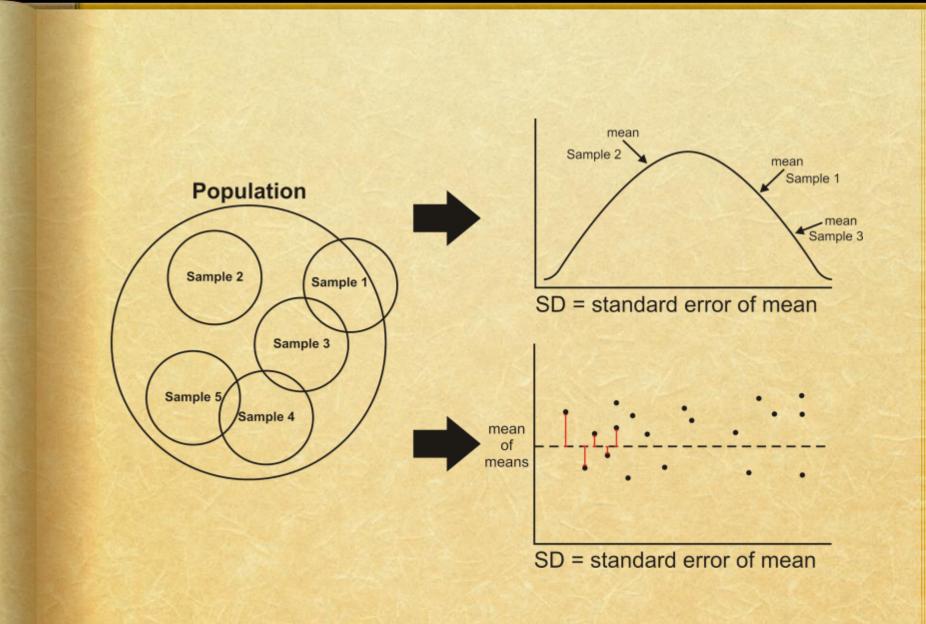


Sample – set of individuals selected from the population and intended to represent the population in the study

Measurement error – when you calculate a statistic based on sample information it is likely that your sample is not completely representative of the population. This is the difference between the true population parameter and your sample statistic: it is called measurement error.

Standard error – standard error is the standard deviation of the sampling distribution of the statistic: it is a parameter.

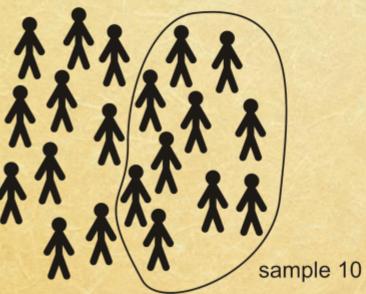


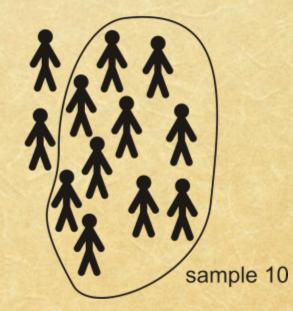


State of

Standard error

- If you draw many random samples from the same population you will get slightly different means for each sample
- If you plot all these means on a graph then the standard deviation of the distribution of means will be the standard error of the mean
- This helps you to determine how confident you can be in estimating the population mean from any one sample mean





Is bigger better?

population 20

population 12

Is bigger better?

 If the sample is correctly drawn, bigger relative to population size is better

SE_m =
$$\frac{\text{Estimated SD}}{\sqrt{n}}$$

e.g. = $\frac{10}{\sqrt{25}} = 2$ but = $\frac{10}{\sqrt{100}} = 1$

The bigger the sample gets, the smaller the standard error becomes

Sample size

n = (z*s/E)2

Where n is the sample size, z is the standard value for the level of confidence chosen in SD units (95% is 1.96)

s is the estimated standard deviation in units of measurement (find in articles on similar studies with similar populations)

E is the allowable error in units of measurement

Simple random sample (probability sample)

- Everyone in population has the same probability of being included in the sample
 - Lottery
 - Random number generator (demonstration)
 - Manually using a sampling interval and seed number
- Advantage: uses all conventional statistical techniques
- Disadvantages: can be cumbersome in big populations and may miss the characteristic you are researching

Stratified random sample

- Divides population into strata or subpopulations
- Everyone in a specific stratum has the same probability of being included in the sample
- Must know what proportion each stratum represents in the population
- Advantage: Likelihood of including all key groups in sample is high: statistical advantage of random sampling
- Disadvantage: can be cumbersome to get information about strata and a population list for each one

Quota sampling

- Specifies the type of subjects to include and their quotas in the population
- Once quotas are specified, you approach subjects that meet the criteria for inclusion
- Advantages: Likelihood of including all key groups in sample is high; no population list is needed, only information about the subpopulation's proportion in the population
- Disadvantages: Selection bias; filling quotas can be difficult; must test for representativeness before using certain statistical procedures

Theoretical sampling

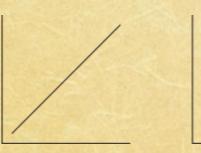
- Specifies the type of subjects that will provide best insights
- Select those subjects (example?)
- Advantages: Likelihood of getting information from subjects is high; this minimises costs
- Disadvantage: Selected subjects might not give a balanced view

Data collection strategies

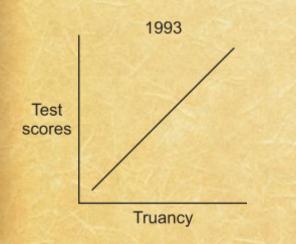
- Questionnaires
- Rating scales
- Testing/assessment
- Interviews (structured or unstructured)
- Observations
- Focus groups

Common mistakes in data collection

- Collecting too much information
- Collecting too little information
- Lack of evidence that data collection method and instruments are valid and reliable
- Problems with instruments:
 - Double-barreled questions
 - Including your assumption in the question
 - Using jargon
 - Leading questions
 - Double negatives


Examples

l assume you know that Wernicke's area is involved in understanding language? Do you think that the wonderful science of the brain should be included in teacher training?


Do you think that subject knowledge and teaching strategies should be included in ITE? Don't you think that not too many people know the difference between PCK and CK?

Correlations and causality

Correlation means ...

• Correlation does not imply causality, e.g.

Experimental techniques

- Test causality using the difference test
- Two groups are treated in the same way except in one respect: thus only the independent variable varies between the two groups
- Any differences in achievement of the two groups are attributed to the different treatment
- Danger: Confounding other unintended variables may influence the dependent variable, e.g. the case of other interventions by other service providers in schools

Popular experimental techniques

Between-subject designs:

- Subjects assigned to two groups intervention and control
- Danger: Selection effects
- Solutions:
 - Randomisation distributes differences randomly between groups; rule of large numbers = higher likelihood distributions will be equal
 - Matching increases sensitivity, but may be difficult to achieve

Popular experimental techniques

Within-subject designs:

- Subjects act as own control
- Danger:
 - Carry-over effects: gaining task related skills that spill-over into next treatment or subject reinterprets the meaning of the investigator's intentions, e.g. Piaget/teddy and number conservation
 - Order effects e.g. teddy condition first, higher probability of correct response in adult condition
- Solutions:
 - Counter-balancing distributes order of treatments randomly among subjects (more than two treatments becomes unwieldy)
 - Latin square design (demonstration)

Problems with group experimental designs

- Sample sizes needed
- Finding the subjects for controls
- Maintaining an uncontaminated control group
- Obscuring individual outcomes in group means
- Generalisation from group experiments to individual cases
- Ethical issues

Single case experiment

Baseline Treatment Baseline

Time

Performance

Sod's law

- No coherence in research process, e.g. data collected does not answer research question
 - Back-mapping to research questions and theory
- Problems with data collection instruments/process
 - 3Ps: Planning, piloting, peers
- Data is messy or missing
 - o 3Cs: Control, check, check again
 - Meta-data files or research journal
- Expected change not found (no change, too small, too big or wrong direction) or different results with different methods (in mixed-method design)
 - Back-mapping to research questions and theory was your expectation reasonable?
 - Check sample size, instruments and data collection
 - Check error and confidence levels
 - Check if it might be due to method/s used
 - Collect more data or increase time period using same method/s
 - Collect more data using other method/s

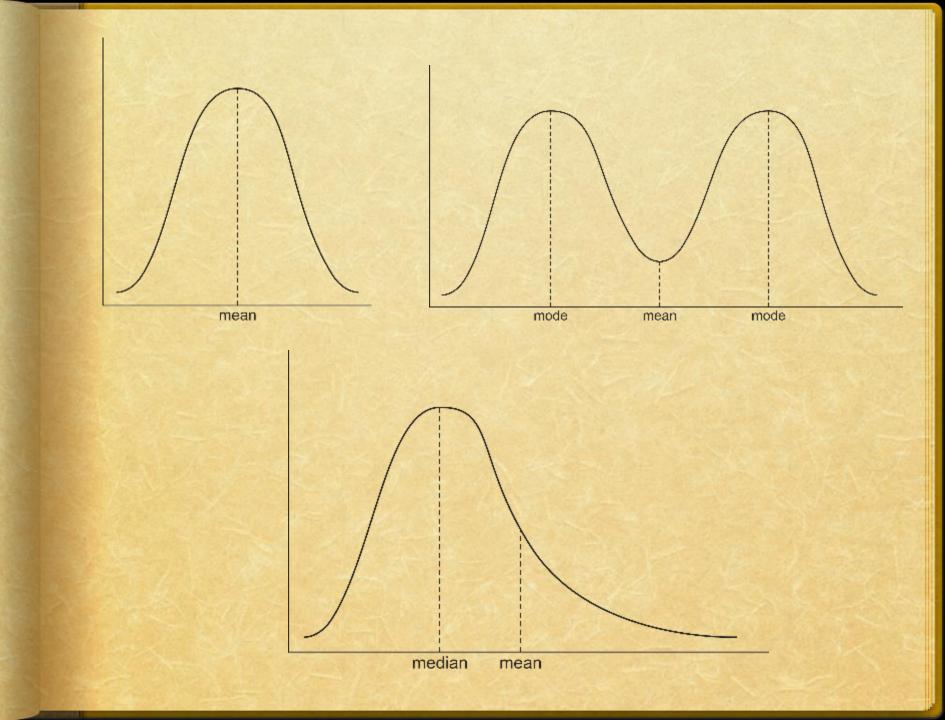
Detour

Statistic – characteristic of a sample
Raw score – original data as collected, before any manipulation
Sample size (n) – number of respondents in sample
Central tendency – a single score that best describe the scores in a dataset
Dispersion – variability of scores

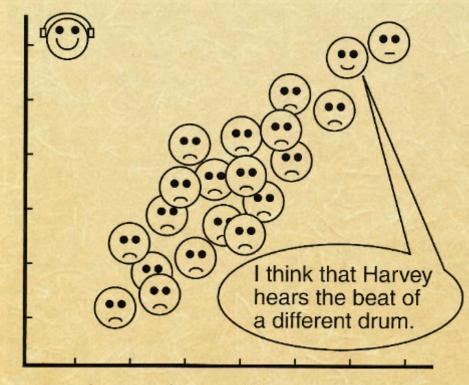
Some basic statistics

Levels of measurement

- Nominal categorical measurements: should be mutually exclusive and exhaustive
- Ordinal rank order, distance between values unknown
- Interval rank ordered, distance between values equal
- Ratio rank ordered, distance between values equal and with a true zero point
- Level of measurement influences which statistics are appropriate
 - Nominal frequencies and percentages, pie or bar graph
 - Ordinal mode or median, minimum or maximum, range, pie or bar graph
 - Interval and ratio mean, mode or median, minimum or maximum, range, standard deviation, histogram, box plot, stem and leaf


Types of statistics

- Descriptive describes the sample
- Inferential infers something about the population
- Statistical procedures:
 - Parametric assumes a normal distribution: more robust, many procedures, needs interval level data (some argue for ordinal level data... you decide based on how serious making the wrong conclusion might be)
 - Non-parametric does not assume a normal distribution: less robust, fewer procedures, can be used with ordinal level data

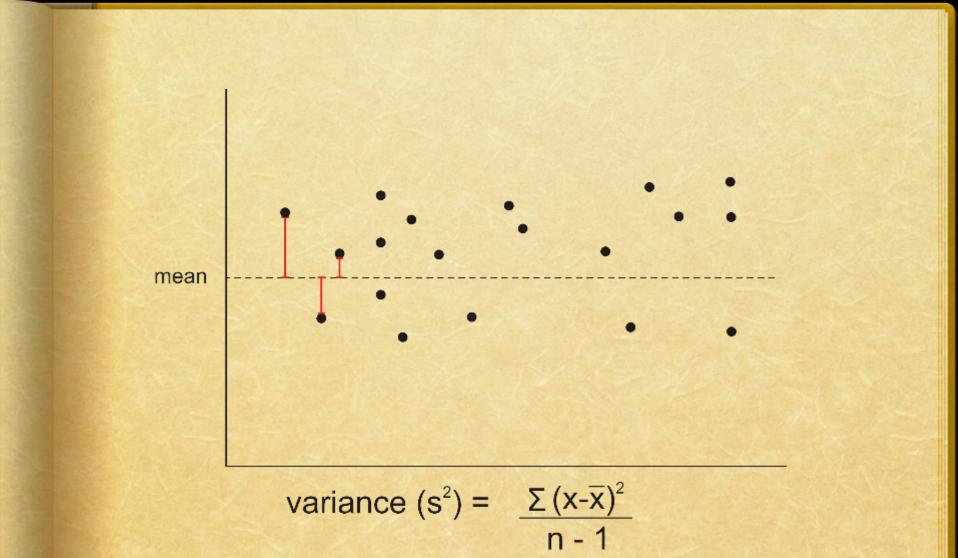

Central tendency

Mode – value appearing most frequently in set of scores

- Unimodal
- Bimodal two scores that occur with the same frequency
- Median (md) middle point if scores are arranged in order of magnitude
 - 50% of scores below the median
 - If distribution is skewed, then the median is a better measure of central tendency than the mean
 - If distribution is small, then the median is a better measure of central tendency than the mean
- Mean average
 - Sensitive to outliers, especially in small samples

Outliers

Scatterplot: n = 21; r = +0.63The Outlier



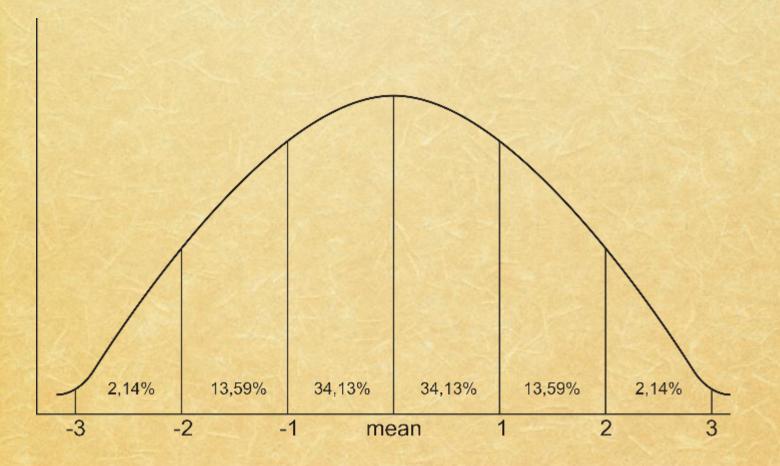
"I could have done better, but I didn't want to depart too far from the accepted norm.

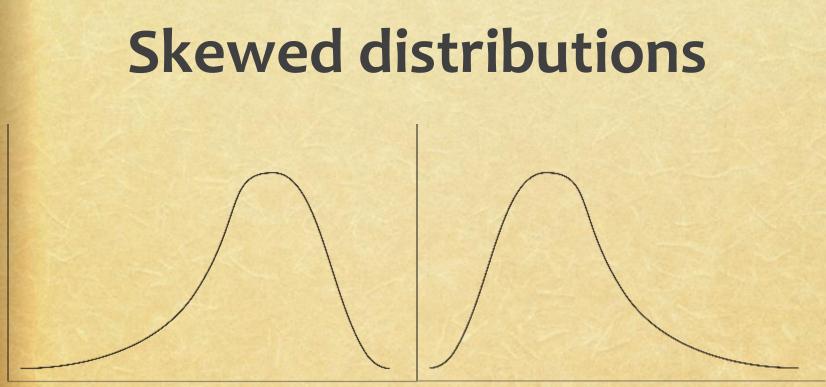
Courtesy of Germaine Variatiow, Cartoonist, Bill Variatiow.

Dispersion

- Minimum smallest value in the set
- Maximum largest value in the set
- Range difference between the smallest and largest value
- Variance amount of spread around the mean, expressed in unit of measurement squared (sum of diff between value and mean for each case, divided by n -1)
- Standard deviation (SD) square root of variance, expressed in unit of measurement
 - Generally we want a mean to be at least twice as big as the SD

$$SD = \sqrt{s^2}$$


GN4480100S8


Deutsche Bundesbank Beltun April Frankfurt am Main L.September 1999

Normal distribution

Gaussian distribution – Carl Gauss, 1809

negaively skewed

positively skewed

- Refers to the tail of the distribution
- If data refers to achievement on a test,
 - negatively skewed means the test was too easy
 - positively skewed means the test was too difficult

Practical tips and demonstrations

- Data collection
 - Always record as much data as possible... rather too much than too little
 - Always go for random sampling if at all possible
- Data management and filing
 - Label all (electronic and hard copy) files with date and sample information
 - Count and count again at every step
- Data capturing in Excel
 - Headings (always start with letter)
 - List of codes and meanings
 - Use data validation function
 - Label missing values and data collection errors
- Data cleaning using filters in Excel
 - Check counts
 - Check for invalid codes
 - Check for blank blocks
 - Check min and max values for each variable
- Meta-files